/www/wwwroot/Blog/usr/plugins/AMP/templates/MIPpage.php on line 33
">

Pandas数据挖掘与分析

2020-09-10T21:07:59

Pandas介绍

  • 2008年WesMcKinney开发出的库
  • 专门用于数据挖掘的开源python库
  • 以Numpy为基础,借力Numpy模块在计算方面性能高的优势
  • 基于matplotlib,能够简便的画图
  • 独特的数据结构

为什么使用Pandas

Numpy已经能够帮助我们处理数据,能够结合matplotlib解决部分数据展示等问题,那么pandas学习的目的在什么地方呢?

  • 增强图表可读性

    回忆我们在numpy当中创建学生成绩表样式:

array([[92, 55, 78, 50, 50],
       [71, 76, 50, 48, 96],
       [45, 84, 78, 51, 68],
       [81, 91, 56, 54, 76],
       [86, 66, 77, 67, 95],
       [46, 86, 56, 61, 99],
       [46, 95, 44, 46, 56],
       [80, 50, 45, 65, 57],
       [41, 93, 90, 41, 97],
       [65, 83, 57, 57, 40]])

如果数据展示为这样,可读性就会更友好:

     水工程施工  建筑给排水  给排水管网  泵与泵站  流体力学
同学0     92     55     78    50    50
同学1     71     76     50    48    96
同学2     45     84     78    51    68
同学3     81     91     56    54    76
同学4     86     66     77    67    95
同学5     46     86     56    61    99
同学6     46     95     44    46    56
同学7     80     50     45    65    57
同学8     41     93     90    41    97
同学9     65     83     57    57    40
  • 便捷的数据处理能力

  • 读取文件方便
  • 封装了Matplotlib、Numpy的画图和计算

代码示例:

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: arr = np.array([[92, 55, 78, 50, 50],
   ...:        [71, 76, 50, 48, 96],
   ...:        [45, 84, 78, 51, 68],
   ...:        [81, 91, 56, 54, 76],
   ...:        [86, 66, 77, 67, 95],
   ...:        [46, 86, 56, 61, 99],
   ...:        [46, 95, 44, 46, 56],
   ...:        [80, 50, 45, 65, 57],
   ...:        [41, 93, 90, 41, 97],
   ...:        [65, 83, 57, 57, 40]])

In [4]: index_name = [f"同学{i}" for i in range(10)]

In [5]: column_name = ['水工程施工', '建筑给排水', '给排水管网', '泵与泵站', '流体力学']
    
In [7]: pd.DataFrame(arr, index=index_name, columns=column_name)
Out[7]:
     水工程施工  建筑给排水  给排水管网  泵与泵站  流体力学
同学0     92     55     78    50    50
同学1     71     76     50    48    96
同学2     45     84     78    51    68
同学3     81     91     56    54    76
同学4     86     66     77    67    95
同学5     46     86     56    61    99
同学6     46     95     44    46    56
同学7     80     50     45    65    57
同学8     41     93     90    41    97
同学9     65     83     57    57    40

DataFrame属性

In [9]: data_frame.shape  # 输出维度
Out[9]: (10, 5)

In [10]: data_frame.index  # 表列值
Out[10]: Index(['同学0', '同学1', '同学2', '同学3', '同学4', '同学5', '同学6', '同学7', '同学8', '同学9'], dtype='object')

In [11]: data_frame.columns  # 表头
Out[11]: Index(['水工程施工', '建筑给排水', '给排水管网', '泵与泵站', '流体力学'], dtype='object')

In [12]: data_frame.T  # 转置
Out[12]:
       同学0  同学1  同学2  同学3  同学4  同学5  同学6  同学7  同学8  同学9
水工程施工   92   71   45   81   86   46   46   80   41   65
建筑给排水   55   76   84   91   66   86   95   50   93   83
给排水管网   78   50   78   56   77   56   44   45   90   57
泵与泵站    50   48   51   54   67   61   46   65   41   57
流体力学    50   96   68   76   95   99   56   57   97   40

In [17]: data_frame.values  # 输出所有值
Out[17]:
array([[92, 55, 78, 50, 50],
       [71, 76, 50, 48, 96],
       [45, 84, 78, 51, 68],
       [81, 91, 56, 54, 76],
       [86, 66, 77, 67, 95],
       [46, 86, 56, 61, 99],
       [46, 95, 44, 46, 56],
       [80, 50, 45, 65, 57],
       [41, 93, 90, 41, 97],
       [65, 83, 57, 57, 40]])

In [14]: data_frame.head(2)  # 输出前两行
Out[14]:
     水工程施工  建筑给排水  给排水管网  泵与泵站  流体力学
同学0     92     55     78    50    50
同学1     71     76     50    48    96

In [15]: data_frame.head()  # 输出前五行
Out[15]:
     水工程施工  建筑给排水  给排水管网  泵与泵站  流体力学
同学0     92     55     78    50    50
同学1     71     76     50    48    96
同学2     45     84     78    51    68
同学3     81     91     56    54    76
同学4     86     66     77    67    95

In [16]: data_frame.tail()  # 输出最后五行
Out[16]:
     水工程施工  建筑给排水  给排水管网  泵与泵站  流体力学
同学5     46     86     56    61    99
同学6     46     95     44    46    56
同学7     80     50     45    65    57
同学8     41     93     90    41    97
同学9     65     83     57    57    40

DataFrame索引

In [1]: import numpy as np, pandas as pd

In [2]: arr = np.array([[92, 55, 78, 50, 50],
   ...:        [71, 76, 50, 48, 96],
   ...:        [45, 84, 78, 51, 68],
   ...:        [81, 91, 56, 54, 76],
   ...:        [86, 66, 77, 67, 95],
   ...:        [46, 86, 56, 61, 99],
   ...:        [46, 95, 44, 46, 56],
   ...:        [80, 50, 45, 65, 57],
   ...:        [41, 93, 90, 41, 97],
   ...:        [65, 83, 57, 57, 40]])

In [3]: index_name = [f"同学{i}" for i in range(10)]

In [4]: column_name = ['水工程施工', '建筑给排水', '给排水管网', '泵与泵站', '流体力学']

In [5]: data_frame = pd.DataFrame(arr, index=index_name, columns=column_name)

In [6]: data_frame.index = [f"同学_{i}" for i in range(10)]  # 重新设置索引

In [7]: data_frame.index
Out[7]:
Index(['同学_0', '同学_1', '同学_2', '同学_3', '同学_4', '同学_5', '同学_6', '同学_7', '同学_8',
       '同学_9'],
      dtype='object')

In [8]: data_frame.index[0]
Out[8]: '同学_0'

In [9]: data_frame.index[0] = '同学_007'  # 不能对单个索引赋值!!!必须重新设置所有索引
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-9-6b0524cf387a> in <module>
----> 1 data_frame.index[0] = '同学_007'

c:\users\myxc\appdata\local\programs\python\python37\lib\site-packages\pandas\core\indexes\base.py in __setitem__(self, key, value)
   4075
   4076     def __setitem__(self, key, value):
-> 4077         raise TypeError("Index does not support mutable operations")
   4078
   4079     def __getitem__(self, key):

TypeError: Index does not support mutable operations
    
In [10]: data_frame.reset_index()  # 重置索引
Out[10]:
  index  水工程施工  建筑给排水  给排水管网  泵与泵站  流体力学
0  同学_0     92     55     78    50    50
1  同学_1     71     76     50    48    96
2  同学_2     45     84     78    51    68
3  同学_3     81     91     56    54    76
4  同学_4     86     66     77    67    95
5  同学_5     46     86     56    61    99
6  同学_6     46     95     44    46    56
7  同学_7     80     50     45    65    57
8  同学_8     41     93     90    41    97
9  同学_9     65     83     57    57    40

In [12]: data_frame.reset_index(drop=True)  # 删除原有索引并生成新的索引
Out[12]:
   水工程施工  建筑给排水  给排水管网  泵与泵站  流体力学
0     92     55     78    50    50
1     71     76     50    48    96
2     45     84     78    51    68
3     81     91     56    54    76
4     86     66     77    67    95
5     46     86     56    61    99
6     46     95     44    46    56
7     80     50     45    65    57
8     41     93     90    41    97
9     65     83     57    57    40

In [13]: data_frame.set_index(keys=['流体力学'])  # 将某一列设置为索引
Out[13]:
      水工程施工  建筑给排水  给排水管网  泵与泵站
流体力学
50       92     55     78    50
96       71     76     50    48
68       45     84     78    51
76       81     91     56    54
95       86     66     77    67
99       46     86     56    61
56       46     95     44    46
57       80     50     45    65
97       41     93     90    41
40       65     83     57    57

In [15]: data_frame.set_index(keys=['流体力学', '水工程施工'])  # 将某几列设置为索引
Out[15]:
            建筑给排水  给排水管网  泵与泵站
流体力学 水工程施工
50   92        55     78    50
96   71        76     50    48
68   45        84     78    51
76   81        91     56    54
95   86        66     77    67
99   46        86     56    61
56   46        95     44    46
57   80        50     45    65
97   41        93     90    41
40   65        83     57    57

MultiIndex

多级或分层索引对象。

  • index属性

    • names:levels的名称
    • levels:每个level的元组值
In [15]: data_frame.set_index(keys=['流体力学', '水工程施工'])  # 将某几列设置为索引
Out[15]:
            建筑给排水  给排水管网  泵与泵站
流体力学 水工程施工
50   92        55     78    50
96   71        76     50    48
68   45        84     78    51
76   81        91     56    54
95   86        66     77    67
99   46        86     56    61
56   46        95     44    46
57   80        50     45    65
97   41        93     90    41
40   65        83     57    57

In [18]: a.index
Out[18]:
MultiIndex([(50, 92),
            (96, 71),
            (68, 45),
            (76, 81),
            (95, 86),
            (99, 46),
            (56, 46),
            (57, 80),
            (97, 41),
            (40, 65)],
           names=['流体力学', '水工程施工'])

In [19]: a.index.names
Out[19]: FrozenList(['流体力学', '水工程施工'])

In [20]: a.index.values
Out[20]:
array([(50, 92), (96, 71), (68, 45), (76, 81), (95, 86), (99, 46),
       (56, 46), (57, 80), (97, 41), (40, 65)], dtype=object)

Panel

class pandas.Panel(data=None, items=None, major_axis=None, minor_axis=None, copy=False, dtype=None)

  • 存储3维数组的Panel结构
p = pd.Panel(np.arange(24).reshape(4,3,2),
                 items=list('ABCD'),
                 major_axis=pd.date_range('20130101', periods=3),
                 minor_axis=['first', 'second'])
p

<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second
  • items - axis 0,每个项目对应于内部包含的数据帧(DataFrame)。
  • major_axis - axis 1,它是每个数据帧(DataFrame)的索引(行)。
  • minor_axis - axis 2,它是每个数据帧(DataFrame)的列。

查看panel数据:

p[:,:,"first"]
p["B",:,:]
注:Pandas从版本0.20.0开始弃用:推荐的用于表示3D数据的方法是通过DataFrame上的MultiIndex方法

如果获取DataFrame中某个股票的不同时间数据?这样的结构是什么样的?

Series结构

什么是Series结构呢,我们直接看下面的图:

  • series结构只有行索引

我们将之前的涨跌幅数据进行转置,然后获取'股票0'的所有数据

# series
type(data['2017-01-02'])
pandas.core.series.Series

# 这一步相当于是series去获取行索引的值
data['2017-01-02']['股票_0']
-0.18753158283513574

创建series

通过已有数据创建

  • 指定内容,默认索引
pd.Series(np.arange(10))
  • 指定索引
pd.Series([6.7,5.6,3,10,2], index=[1,2,3,4,5])

通过字典数据创建

pd.Series({'red':100, ''blue':200, 'green': 500, 'yellow':1000})

series获取属性和值

  • index
  • values

基本数据操作

为了更好的理解这些基本操作,我们将读取一个真实的股票数据。关于文件操作,后面在介绍,这里只先用一下API

In [1]: import pandas as pd

In [2]: data = pd.read_csv("./stock_day.csv")  # 读取文件

In [3]: data = data.drop(["ma5","ma10","ma20","v_ma5","v_ma10","v_ma20"], axis=1
   ...: )  # 删除一些列,让数据更简单些,再去做后面的操作

In [4]: data.head()
Out[4]:
             open   high  close    low    volume  price_change  p_change  turnover
2018-02-27  23.53  25.88  24.16  23.53  95578.03          0.63      2.68      2.39
2018-02-26  22.80  23.78  23.53  22.80  60985.11          0.69      3.02      1.53
2018-02-23  22.88  23.37  22.82  22.71  52914.01          0.54      2.42      1.32
2018-02-22  22.25  22.76  22.28  22.02  36105.01          0.36      1.64      0.90
2018-02-14  21.49  21.99  21.92  21.48  23331.04          0.44      2.05      0.58

索引操作

Numpy当中我们已经讲过使用索引选取序列和切片选择,pandas也支持类似的操作,也可以直接使用列名、行名

称,甚至组合使用。

直接使用行列索引(先列后行)

获取'2018-02-27'这天的'close'的结果:

In [6]: data['close']['2018-02-27']
Out[6]: 24.16

In [7]: data['2018-02-27']['close']
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
c:\users\myxc\appdata\local\programs\python\python37\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)

结合loc或者iloc使用索引

获取从'2018-02-27':'2018-02-22','open'的结果:

In [8]: data.loc['2018-02-27':'2018-02-22', 'open']  # 使用loc:只能指定行列索引的名字
Out[8]:
2018-02-27    23.53
2018-02-26    22.80
2018-02-23    22.88
2018-02-22    22.25
Name: open, dtype: float64

使用iloc可以通过索引的下标去获取,获取前100天数据的'open'列的结果:

In [9]: data.iloc[0:100, 0:2].head()
Out[9]:
             open   high
2018-02-27  23.53  25.88
2018-02-26  22.80  23.78
2018-02-23  22.88  23.37
2018-02-22  22.25  22.76
2018-02-14  21.49  21.99

使用ix组合索引

获取行第1天到第4天,['open', 'close', 'high', 'low']这个四个指标的结果:

该API已经取消!!!
# 推荐使用loc和iloc来获取的方式
data.loc[data.index[0:4], ['open', 'close', 'high', 'low']]
data.iloc[0:4, data.columns.get_indexer(['open', 'close', 'high', 'low'])]

赋值操作

In [14]: data['volume'] = 99999

In [15]: data
Out[15]:
             open   high  close    low  volume  price_change  p_change  turnover
2018-02-27  23.53  25.88  24.16  23.53   99999          0.63      2.68      2.39
2018-02-26  22.80  23.78  23.53  22.80   99999          0.69      3.02      1.53
2018-02-23  22.88  23.37  22.82  22.71   99999          0.54      2.42      1.32
2018-02-22  22.25  22.76  22.28  22.02   99999          0.36      1.64      0.90
2018-02-14  21.49  21.99  21.92  21.48   99999          0.44      2.05      0.58
...           ...    ...    ...    ...     ...           ...       ...       ...
2015-03-06  13.17  14.48  14.28  13.13   99999          1.12      8.51      6.16
2015-03-05  12.88  13.45  13.16  12.87   99999          0.26      2.02      3.19
2015-03-04  12.80  12.92  12.90  12.61   99999          0.20      1.57      2.30
2015-03-03  12.52  13.06  12.70  12.52   99999          0.18      1.44      4.76
2015-03-02  12.25  12.67  12.52  12.20   99999          0.32      2.62      3.30

[643 rows x 8 columns]

In [16]: data.volume = 88888

In [17]: data.head()
Out[17]:
             open   high  close    low  volume  price_change  p_change  turnover
2018-02-27  23.53  25.88  24.16  23.53   88888          0.63      2.68      2.39
2018-02-26  22.80  23.78  23.53  22.80   88888          0.69      3.02      1.53
2018-02-23  22.88  23.37  22.82  22.71   88888          0.54      2.42      1.32
2018-02-22  22.25  22.76  22.28  22.02   88888          0.36      1.64      0.90
2018-02-14  21.49  21.99  21.92  21.48   88888          0.44      2.05      0.58
不能对行使用该方法!!!
In [18]: data['2018-02-27'] = 7777

In [19]: data.head()
Out[19]:
             open   high  close    low  volume  price_change  p_change  turnover  2018-02-27
2018-02-27  23.53  25.88  24.16  23.53   88888          0.63      2.68      2.39        7777
2018-02-26  22.80  23.78  23.53  22.80   88888          0.69      3.02      1.53        7777
2018-02-23  22.88  23.37  22.82  22.71   88888          0.54      2.42      1.32        7777
2018-02-22  22.25  22.76  22.28  22.02   88888          0.36      1.64      0.90        7777
2018-02-14  21.49  21.99  21.92  21.48   88888          0.44      2.05      0.58        7777

排序

排序有两种形式,一种对于索引进行排序,一种对于内容进行排序

  • 使用df.sort_values(by=, ascending=)

    • 单个键或者多个键进行排序,默认升序
    • ascending=False:降序
    • ascending=True:升序
In [20]: data = data.sort_values(by='p_change', ascending=False).head()  # 按照涨跌幅大小进行排序 , 使用ascending指定按照大小排序

In [21]: data.head()
Out[21]:
             open   high  close    low  volume  price_change  p_change  turnover  2018-02-27
2015-08-28  15.40  16.46  16.46  15.00   88888          1.50     10.03      4.03        7777
2015-05-21  27.50  28.22  28.22  26.50   88888          2.57     10.02      4.15        7777
2016-12-22  18.50  20.42  20.42  18.45   88888          1.86     10.02      3.77        7777
2015-08-04  16.20  17.35  17.35  15.80   88888          1.58     10.02      3.23        7777
2016-07-07  18.66  18.66  18.66  18.41   88888          1.70     10.02      1.67        7777

In [24]: data = data.sort_values(by=['p_change', 'price_change'], ascending=False)  # 按照过个键进行排序

In [25]: data.head()
Out[25]:
             open   high  close    low  volume  price_change  p_change  turnover  2018-02-27
2015-08-28  15.40  16.46  16.46  15.00   88888          1.50     10.03      4.03        7777
2015-05-21  27.50  28.22  28.22  26.50   88888          2.57     10.02      4.15        7777
2016-12-22  18.50  20.42  20.42  18.45   88888          1.86     10.02      3.77        7777
2016-07-07  18.66  18.66  18.66  18.41   88888          1.70     10.02      1.67        7777
2015-08-04  16.20  17.35  17.35  15.80   88888          1.58     10.02      3.23        7777

使用df.sort_index给索引进行排序:

In [26]: data.sort_index()
    ...:
Out[26]:
             open   high  close    low  volume  price_change  p_change  turnover  2018-02-27
2015-05-21  27.50  28.22  28.22  26.50   88888          2.57     10.02      4.15        7777
2015-08-04  16.20  17.35  17.35  15.80   88888          1.58     10.02      3.23        7777
2015-08-28  15.40  16.46  16.46  15.00   88888          1.50     10.03      4.03        7777
2016-07-07  18.66  18.66  18.66  18.41   88888          1.70     10.02      1.67        7777
2016-12-22  18.50  20.42  20.42  18.45   88888          1.86     10.02      3.77        7777

使用series.sort_values(ascending=True)进行排序

series排序时,只有一列,不需要参数

In [28]: demo = pd.Series(data['open'])

In [29]: demo
Out[29]:
2015-08-28    15.40
2015-05-21    27.50
2016-12-22    18.50
2016-07-07    18.66
2015-08-04    16.20
Name: open, dtype: float64

In [30]: demo.sort_values(ascending=True)
Out[30]:
2015-08-28    15.40
2015-08-04    16.20
2016-12-22    18.50
2016-07-07    18.66
2015-05-21    27.50
Name: open, dtype: float64

使用series.sort_index()进行排序

与df一致

In [31]: demo.sort_index(ascending=True)
Out[31]:
2015-05-21    27.50
2015-08-04    16.20
2015-08-28    15.40
2016-07-07    18.66
2016-12-22    18.50
Name: open, dtype: float64

DataFrame运算

算术运算

  • add(other):进行数学运算加上具体的一个数字
  • 或者直接使用加法

第一种方法:

In [5]: data.head(2)
Out[5]:
             open   high  close    low    volume  price_change  p_change  turnover
2018-02-27  23.53  25.88  24.16  23.53  95578.03          0.63      2.68      2.39
2018-02-26  22.80  23.78  23.53  22.80  60985.11          0.69      3.02      1.53

In [6]: data['open'].add(1)
Out[6]:
2018-02-27    24.53
2018-02-26    23.80
2018-02-23    23.88
2018-02-22    23.25
2018-02-14    22.49
              ...
2015-03-06    14.17
2015-03-05    13.88
2015-03-04    13.80
2015-03-03    13.52
2015-03-02    13.25
Name: open, Length: 643, dtype: float64

第二种方法:

In [11]: data['open'] += 1

In [12]: data
Out[12]:
             open   high  close    low     volume  price_change  p_change  turnover
2018-02-27  24.53  25.88  24.16  23.53   95578.03          0.63      2.68      2.39
2018-02-26  23.80  23.78  23.53  22.80   60985.11          0.69      3.02      1.53
2018-02-23  23.88  23.37  22.82  22.71   52914.01          0.54      2.42      1.32
2018-02-22  23.25  22.76  22.28  22.02   36105.01          0.36      1.64      0.90
2018-02-14  22.49  21.99  21.92  21.48   23331.04          0.44      2.05      0.58
...           ...    ...    ...    ...        ...           ...       ...       ...
2015-03-06  14.17  14.48  14.28  13.13  179831.72          1.12      8.51      6.16
2015-03-05  13.88  13.45  13.16  12.87   93180.39          0.26      2.02      3.19
2015-03-04  13.80  12.92  12.90  12.61   67075.44          0.20      1.57      2.30
2015-03-03  13.52  13.06  12.70  12.52  139071.61          0.18      1.44      4.76
2015-03-02  13.25  12.67  12.52  12.20   96291.73          0.32      2.62      3.30

[643 rows x 8 columns]

减法:

In [13]: data['m_price_change'] = data['close'].sub(data['open'])

In [14]: data.head()
Out[14]:
             open   high  close    low    volume  price_change  p_change  turnover  m_price_change
2018-02-27  24.53  25.88  24.16  23.53  95578.03          0.63      2.68      2.39           -0.37
2018-02-26  23.80  23.78  23.53  22.80  60985.11          0.69      3.02      1.53           -0.27
2018-02-23  23.88  23.37  22.82  22.71  52914.01          0.54      2.42      1.32           -1.06
2018-02-22  23.25  22.76  22.28  22.02  36105.01          0.36      1.64      0.90           -0.97
2018-02-14  22.49  21.99  21.92  21.48  23331.04          0.44      2.05      0.58           -0.57

逻辑运算

逻辑运算符号<、 >、|、 &

例如筛选p_change > 2的日期数据

  • data['p_change'] > 2返回逻辑结果
In [15]: data['p_change'] > 2
Out[15]:
2018-02-27     True
2018-02-26     True
2018-02-23     True
2018-02-22    False
2018-02-14     True
              ...
2015-03-06     True
2015-03-05     True
2015-03-04    False
2015-03-03    False
2015-03-02     True
Name: p_change, Length: 643, dtype: bool
            
In [16]: data[data['p_change'] > 2]  # 逻辑判断的结果可以作为筛选的依据
Out[16]:
             open   high  close    low     volume  price_change  p_change  turnover  m_price_change
2018-02-27  24.53  25.88  24.16  23.53   95578.03          0.63      2.68      2.39           -0.37
2018-02-26  23.80  23.78  23.53  22.80   60985.11          0.69      3.02      1.53           -0.27
2018-02-23  23.88  23.37  22.82  22.71   52914.01          0.54      2.42      1.32           -1.06
2018-02-14  22.49  21.99  21.92  21.48   23331.04          0.44      2.05      0.58           -0.57
2018-02-12  21.70  21.40  21.19  20.63   32445.39          0.82      4.03      0.81           -0.51
...           ...    ...    ...    ...        ...           ...       ...       ...             ...
2015-03-13  15.13  14.50  14.47  14.08   61342.22          0.36      2.55      2.10           -0.66
2015-03-10  15.20  14.80  14.65  14.01  101213.51          0.34      2.38      3.46           -0.55
2015-03-06  14.17  14.48  14.28  13.13  179831.72          1.12      8.51      6.16            0.11
2015-03-05  13.88  13.45  13.16  12.87   93180.39          0.26      2.02      3.19           -0.72
2015-03-02  13.25  12.67  12.52  12.20   96291.73          0.32      2.62      3.30           -0.73

[183 rows x 9 columns]
  • 完成一个多个逻辑判断, 筛选p_change > 2并且open > 15
In [17]: data[(data['p_change'] > 2) & (data['open'] > 15)]
Out[17]:
             open   high  close    low     volume  price_change  p_change  turnover  m_price_change
2018-02-27  24.53  25.88  24.16  23.53   95578.03          0.63      2.68      2.39           -0.37
2018-02-26  23.80  23.78  23.53  22.80   60985.11          0.69      3.02      1.53           -0.27
2018-02-23  23.88  23.37  22.82  22.71   52914.01          0.54      2.42      1.32           -1.06
2018-02-14  22.49  21.99  21.92  21.48   23331.04          0.44      2.05      0.58           -0.57
2018-02-12  21.70  21.40  21.19  20.63   32445.39          0.82      4.03      0.81           -0.51
...           ...    ...    ...    ...        ...           ...       ...       ...             ...
2015-03-27  15.90  15.86  15.77  14.90  120352.13          0.84      5.63      4.12           -0.13
2015-03-17  15.90  15.44  15.18  14.63  158770.77          0.31      2.08      5.43           -0.72
2015-03-16  15.52  15.05  14.87  14.51   94468.30          0.40      2.76      3.23           -0.65
2015-03-13  15.13  14.50  14.47  14.08   61342.22          0.36      2.55      2.10           -0.66
2015-03-10  15.20  14.80  14.65  14.01  101213.51          0.34      2.38      3.46           -0.55

[174 rows x 9 columns]

逻辑运算函数

  • query(expr)

    • expr:查询字符串

通过query使得刚才的过程更加方便简单

In [19]: data.query("p_change > 0.2 & turnover > 0.5")
Out[19]:
             open   high  close    low     volume  price_change  p_change  turnover  m_price_change
2018-02-27  24.53  25.88  24.16  23.53   95578.03          0.63      2.68      2.39           -0.37
2018-02-26  23.80  23.78  23.53  22.80   60985.11          0.69      3.02      1.53           -0.27
2018-02-23  23.88  23.37  22.82  22.71   52914.01          0.54      2.42      1.32           -1.06
2018-02-22  23.25  22.76  22.28  22.02   36105.01          0.36      1.64      0.90           -0.97
2018-02-14  22.49  21.99  21.92  21.48   23331.04          0.44      2.05      0.58           -0.57
...           ...    ...    ...    ...        ...           ...       ...       ...             ...
2015-03-06  14.17  14.48  14.28  13.13  179831.72          1.12      8.51      6.16            0.11
2015-03-05  13.88  13.45  13.16  12.87   93180.39          0.26      2.02      3.19           -0.72
2015-03-04  13.80  12.92  12.90  12.61   67075.44          0.20      1.57      2.30           -0.90
2015-03-03  13.52  13.06  12.70  12.52  139071.61          0.18      1.44      4.76           -0.82
2015-03-02  13.25  12.67  12.52  12.20   96291.73          0.32      2.62      3.30           -0.73

[324 rows x 9 columns]
  • isin(values)

例如判断'turnover'是否为4.19, 2.39

In [20]: data[data['turnover'].isin([4.19, 2.39])]
Out[20]:
             open   high  close    low     volume  price_change  p_change  turnover  m_price_change
2018-02-27  24.53  25.88  24.16  23.53   95578.03          0.63      2.68      2.39           -0.37
2017-07-25  24.07  24.20  23.70  22.64  167489.48          0.67      2.91      4.19           -0.37
2016-09-28  20.88  20.98  20.86  19.71   95580.75          0.98      4.93      2.39           -0.02
2015-04-07  17.54  17.98  17.54  16.50  122471.85          0.88      5.28      4.19            0.00

统计运算

describe()

综合分析: 能够直接得出很多统计结果,count, mean, std, min, max

In [21]: data.describe()  # 计算平均值、标准差、最大值、最小值
Out[21]:
             open        high       close         low         volume  price_change    p_change    turnover  m_price_change
count  643.000000  643.000000  643.000000  643.000000     643.000000    643.000000  643.000000  643.000000      643.000000
mean    22.272706   21.900513   21.336267   20.771835   99905.519114      0.018802    0.190280    2.936190       -0.936439
std      3.930973    4.077578    3.942806    3.791968   73879.119354      0.898476    4.079698    2.079375        0.800565
min     13.250000   12.670000   12.360000   12.200000    1158.120000     -3.520000  -10.030000    0.040000       -4.300000
25%     20.000000   19.500000   19.045000   18.525000   48533.210000     -0.390000   -1.850000    1.360000       -1.300000
50%     22.440000   21.970000   21.450000   20.980000   83175.930000      0.050000    0.260000    2.500000       -0.920000
75%     24.400000   24.065000   23.415000   22.850000  127580.055000      0.455000    2.305000    3.915000       -0.550000
max     35.990000   36.350000   35.210000   34.010000  501915.410000      3.030000   10.030000   12.560000        2.410000

统计函数

Numpy当中已经详细介绍,在这里我们演示min(最小值), max(最大值), mean(平均值), median(中位数), var(方差), std(标准差),mode(众数)结果。

countNumber of non-NA observations
sumSum of values
meanMean of values
medianArithmetic median of values
minMinimum
maxMaximum
modeMode
absAbsolute Value
prodProduct of values
stdBessel-corrected sample standard deviation
varUnbiased variance
idxmaxcompute the index labels with the maximum
idxmincompute the index labels with the minimum

对于单个函数去进行统计的时候,坐标轴还是按照这些默认为“columns” (axis=0, default),如果要对行“index” 需要指定(axis=1)

  • max()、min()
In [22]: data.max(0)
Out[22]:
open                  35.99
high                  36.35
close                 35.21
low                   34.01
volume            501915.41
price_change           3.03
p_change              10.03
turnover              12.56
m_price_change         2.41
dtype: float64

In [23]: data.max(1)
Out[23]:
2018-02-27     95578.03
2018-02-26     60985.11
2018-02-23     52914.01
2018-02-22     36105.01
2018-02-14     23331.04
                ...
2015-03-06    179831.72
2015-03-05     93180.39
2015-03-04     67075.44
2015-03-03    139071.61
2015-03-02     96291.73
Length: 643, dtype: float64
  • std()、var()
In [24]: data.var()
Out[24]:
open              1.545255e+01
high              1.662665e+01
close             1.554572e+01
low               1.437902e+01
volume            5.458124e+09
price_change      8.072595e-01
p_change          1.664394e+01
turnover          4.323800e+00
m_price_change    6.409037e-01
dtype: float64

In [25]: data.std()
Out[25]:
open                  3.930973
high                  4.077578
close                 3.942806
low                   3.791968
volume            73879.119354
price_change          0.898476
p_change              4.079698
turnover              2.079375
m_price_change        0.800565
dtype: float64
  • median():中位数

中位数为将数据从小到大排列,在最中间的那个数为中位数。如果没有中间数,取中间两个数的平均值。

  • idxmax()、idxmin()

累计统计函数

函数作用
cumsum计算前1/2/3/…/n个数的和
cummax计算前1/2/3/…/n个数的最大值
cummin计算前1/2/3/…/n个数的最小值
cumprod计算前1/2/3/…/n个数的积

那么这些累计统计函数怎么用?

以上这些函数可以对series和dataframe操作

这里我们按照时间的从前往后来进行累计:

In [28]: stock_rise = data['p_change']

In [29]: stock_rise.cumsum()
Out[29]:
2015-03-02      2.62
2015-03-03      4.06
2015-03-04      5.63
2015-03-05      7.65
2015-03-06     16.16
               ...
2018-02-14    112.59
2018-02-22    114.23
2018-02-23    116.65
2018-02-26    119.67
2018-02-27    122.35
Name: p_change, Length: 643, dtype: float64

那么如何让这个连续求和的结果更好的显示呢?

如果要使用plot函数,需要导入matplotlib.

In [30]: import matplotlib.pyplot as plt

In [31]: stock_rise.cumsum().plot()
Out[31]: <AxesSubplot:>

In [32]: plt.show()

自定义运算

  • apply(func, axis=0)

    • func:自定义函数
    • axis=0:默认是列,axis=1为行进行运算
  • 定义一个对列,最大值-最小值的函数
In [35]: data[['open', 'close']].max()
Out[35]:
open     35.99
close    35.21
dtype: float64

In [36]: data[['open', 'close']].min()
Out[36]:
open     13.25
close    12.36
dtype: float64

In [37]: data[['open', 'close']].apply(lambda x: x.max() - x.min(), axis=0)
Out[37]:
open     22.74
close    22.85
dtype: float64

Pandas画图

pandas.DataFrame.plot

  • DataFrame.plot(x=None, y=None, kind='line')

更多参数细节:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html?highlight=plot#pandas.DataFrame.plot

2 pandas.Series.plot

更多参数细节:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.plot.html?highlight=plot#pandas.Series.plot

文件读取与存储

我们的数据大部分存在于文件当中,所以pandas会支持复杂的IO操作,pandas的API支持众多的文件格式,如CSV、SQL、XLS、JSON、HDF5。

注:最常用的HDF5和CSV文件

CSV

read_csv

pandas.read_csv(filepath_or_buffer, sep =',' )

  • filepath_or_buffer:文件路径
  • usecols:指定读取的列名,列表形式

读取之前的股票的数据:

In [1]: import pandas as pd

In [2]: pd.read_csv("./stock_day.csv")
Out[2]:
             open   high  close    low     volume  price_change  p_change     ma5    ma10    ma20      v_ma5     v_ma10     v_ma20  turnover
2018-02-27  23.53  25.88  24.16  23.53   95578.03          0.63      2.68  22.942  22.142  22.875   53782.64   46738.65   55576.11      2.39
2018-02-26  22.80  23.78  23.53  22.80   60985.11          0.69      3.02  22.406  21.955  22.942   40827.52   42736.34   56007.50      1.53
2018-02-23  22.88  23.37  22.82  22.71   52914.01          0.54      2.42  21.938  21.929  23.022   35119.58   41871.97   56372.85      1.32
2018-02-22  22.25  22.76  22.28  22.02   36105.01          0.36      1.64  21.446  21.909  23.137   35397.58   39904.78   60149.60      0.90
2018-02-14  21.49  21.99  21.92  21.48   23331.04          0.44      2.05  21.366  21.923  23.253   33590.21   42935.74   61716.11      0.58
...           ...    ...    ...    ...        ...           ...       ...     ...     ...     ...        ...        ...        ...       ...
2015-03-06  13.17  14.48  14.28  13.13  179831.72          1.12      8.51  13.112  13.112  13.112  115090.18  115090.18  115090.18      6.16
2015-03-05  12.88  13.45  13.16  12.87   93180.39          0.26      2.02  12.820  12.820  12.820   98904.79   98904.79   98904.79      3.19
2015-03-04  12.80  12.92  12.90  12.61   67075.44          0.20      1.57  12.707  12.707  12.707  100812.93  100812.93  100812.93      2.30
2015-03-03  12.52  13.06  12.70  12.52  139071.61          0.18      1.44  12.610  12.610  12.610  117681.67  117681.67  117681.67      4.76
2015-03-02  12.25  12.67  12.52  12.20   96291.73          0.32      2.62  12.520  12.520  12.520   96291.73   96291.73   96291.73      3.30

[643 rows x 14 columns]

In [3]: pd.read_csv("./stock_day.csv", usecols=['open', 'close'])
Out[3]:
             open  close
2018-02-27  23.53  24.16
2018-02-26  22.80  23.53
2018-02-23  22.88  22.82
2018-02-22  22.25  22.28
2018-02-14  21.49  21.92
...           ...    ...
2015-03-06  13.17  14.28
2015-03-05  12.88  13.16
2015-03-04  12.80  12.90
2015-03-03  12.52  12.70
2015-03-02  12.25  12.52

[643 rows x 2 columns]

to_csv

DataFrame.to_csv(path_or_buf=None, sep=', ’, columns=None, header=True, index=True, mode='w', encoding=None)

  • path_or_buf :string or file handle, default None
  • sep :character, default ‘,’
  • columns :sequence, optional
  • mode:'w':重写, 'a' 追加
  • index:是否写进行索引
  • header :boolean or list of string, default True,是否写进列索引值

案例

  • 保存'open'列的数据
# 选取10行数据保存,便于观察数据
data[:10].to_csv("./data/test.csv", columns=['open'])
  • 读取,查看结果
pd.read_csv("./data/test.csv")

     Unnamed: 0    open
0    2018-02-27    23.53
1    2018-02-26    22.80
2    2018-02-23    22.88
3    2018-02-22    22.25
4    2018-02-14    21.49
5    2018-02-13    21.40
6    2018-02-12    20.70
7    2018-02-09    21.20
8    2018-02-08    21.79
9    2018-02-07    22.69

会发现将索引存入到文件当中,变成单独的一列数据。如果需要删除,可以指定index参数,删除原来的文件,重新保存一次。

# index:存储不会讲索引值变成一列数据
data[:10].to_csv("./data/test.csv", columns=['open'], index=False)

HDF5

read_hdf与to_hdf

HDF5文件的读取和存储需要指定一个键,值为要存储的DataFrame

  • pandas.read_hdf(path_or_buf,key =None,** kwargs)

    从h5文件当中读取数据

    • path_or_buffer:文件路径
    • key:读取的键
    • return:Theselected object
  • DataFrame.to_hdf(path_or_buf, key, **kwargs)

案例

  • 读取文件
day_eps_ttm = pd.read_hdf("./data/stock_data/day/day_eps_ttm.h5")

如果读取的时候出现以下错误

需要安装安装tables模块避免不能读取HDF5文件

pip install tables
  • 存储文件
day_eps_ttm.to_hdf("./data/test.h5", key="day_eps_ttm")

再次读取的时候, 需要指定键的名字

new_eps = pd.read_hdf("./data/test.h5", key="day_eps_ttm")

JSON

JSON是我们常用的一种数据交换格式,前面在前后端的交互经常用到,也会在存储的时候选择这种格式。所以我们需要知道Pandas如何进行读取和存储JSON格式。

read_json

pandas.read_json(path_or_buf=None, orient=None, typ='frame', lines=False)

  • 将JSON格式准换成默认的Pandas DataFrame格式
  • orient : string,Indication of expected JSON string format.

    • 'split' : dict like {index -> [index], columns -> [columns], data -> [values]}

      • split 将索引总结到索引,列名到列名,数据到数据。将三部分都分开了
    • 'records' : list like [{column -> value}, ... , {column -> value}]

      • records 以columns:values的形式输出
    • 'index' : dict like {index -> {column -> value}}

      • index 以index:{columns:values}...的形式输出
    • 'columns' : dict like {column -> {index -> value}}

      ,默认该格式

      • colums 以columns:{index:values}的形式输出
    • 'values' : just the values array

      • values 直接输出值
  • lines : boolean, default False

    • 按照每行读取json对象
  • typ : default ‘frame’, 指定转换成的对象类型series或者dataframe

read_josn 案例

  • 数据介绍

这里使用一个新闻标题讽刺数据集,格式为json。is_sarcastic:1讽刺的,否则为0;headline:新闻报道的标题;article_link:链接到原始新闻文章。存储格式为:

{"article_link": "https://www.huffingtonpost.com/entry/versace-black-code_us_5861fbefe4b0de3a08f600d5", "headline": "former versace store clerk sues over secret 'black code' for minority shoppers", "is_sarcastic": 0}
{"article_link": "https://www.huffingtonpost.com/entry/roseanne-revival-review_us_5ab3a497e4b054d118e04365", "headline": "the 'roseanne' revival catches up to our thorny political mood, for better and worse", "is_sarcastic": 0}
  • 读取

orient指定存储的json格式,lines指定按照行去变成一个样本

json_read = pd.read_json("./data/Sarcasm_Headlines_Dataset.json", orient="records", lines=True)

to_json

DataFrame.to_json(path_or_buf=None, orient=None, lines=False)

  • 将Pandas 对象存储为json格式
  • path_or_buf=None:文件地址
  • orient:存储的json形式,{‘split’,’records’,’index’,’columns’,’values’}
  • lines:一个对象存储为一行

案例

  • 存储文件
json_read.to_json("./data/test.json", orient='records')

结果

[{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/versace-black-code_us_5861fbefe4b0de3a08f600d5","headline":"former versace store clerk sues over secret 'black code' for minority shoppers","is_sarcastic":0},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/roseanne-revival-review_us_5ab3a497e4b054d118e04365","headline":"the 'roseanne' revival catches up to our thorny political mood, for better and worse","is_sarcastic":0},{"article_link":"https:\/\/local.theonion.com\/mom-starting-to-fear-son-s-web-series-closest-thing-she-1819576697","headline":"mom starting to fear son's web series closest thing she will have to grandchild","is_sarcastic":1},{"article_link":"https:\/\/politics.theonion.com\/boehner-just-wants-wife-to-listen-not-come-up-with-alt-1819574302","headline":"boehner just wants wife to listen, not come up with alternative debt-reduction ideas","is_sarcastic":1},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/jk-rowling-wishes-snape-happy-birthday_us_569117c4e4b0cad15e64fdcb","headline":"j.k. rowling wishes snape happy birthday in the most magical way","is_sarcastic":0},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/advancing-the-worlds-women_b_6810038.html","headline":"advancing the world's women","is_sarcastic":0},....]
  • 修改lines参数为True
json_read.to_json("./data/test.json", orient='records', lines=True)

结果

{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/versace-black-code_us_5861fbefe4b0de3a08f600d5","headline":"former versace store clerk sues over secret 'black code' for minority shoppers","is_sarcastic":0}
{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/roseanne-revival-review_us_5ab3a497e4b054d118e04365","headline":"the 'roseanne' revival catches up to our thorny political mood, for better and worse","is_sarcastic":0}
{"article_link":"https:\/\/local.theonion.com\/mom-starting-to-fear-son-s-web-series-closest-thing-she-1819576697","headline":"mom starting to fear son's web series closest thing she will have to grandchild","is_sarcastic":1}
{"article_link":"https:\/\/politics.theonion.com\/boehner-just-wants-wife-to-listen-not-come-up-with-alt-1819574302","headline":"boehner just wants wife to listen, not come up with alternative debt-reduction ideas","is_sarcastic":1}
{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/jk-rowling-wishes-snape-happy-birthday_us_569117c4e4b0cad15e64fdcb","headline":"j.k. rowling wishes snape happy birthday in the most magical way","is_sarcastic":0}...

拓展

优先选择使用HDF5文件存储

  • HDF5在存储的时候支持压缩,使用的方式是blosc,这个是速度最快的也是pandas默认支持的
  • 使用压缩可以提磁盘利用率,节省空间
  • HDF5还是跨平台的,可以轻松迁移到hadoop 上面
当前页面是本站的「Baidu MIP」版。发表评论请点击:完整版 »